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ABSTRACT
Noise control strategies involve physical barriers in the transmission path. Conventional barriers
conform to the mass law which states an inverse relation between sound transmission, barrier
mass, and incident frequency. Practical scenarios for low-frequency noise attenuation require
prohibitively thick barriers making them infeasible. Mass-loaded membranes exhibit marked
differences in their dynamic nature from that of bare membranes as they do not necessarily conform
to the mass law. Being thin, compact, and lightweight makes them geometrically ideal for most
applications. The paper presents an analytical model based on the Newtonian approach for the
vibroacoustic behavior of a pre-stretched elastic circular membrane with rigidly attached strip mass
under normal incidence. The point collocation approach distributes the effect of the strip mass
on the membrane as a collection of discretized concentrated loads along the interfacial boundary
resulting in a summation that is easier to solve. The peak and dip frequencies of sound transmission
are determined for circular membranes with eccentric and central strip mass. The present study
evaluates strip mass-loaded membranes’ capability to attenuate noise at low frequencies as an
unconventional physical barrier.

1. INTRODUCTION

Increasing use of mass-loaded membranes in space, energy harvesting, sound transducer, and
noise attenuation applications [1–4] are encouraging researchers to more accurately study and
manipulate the membrane’s dynamic nature as per the requirements of the application. Added
masses alter the vibrational behavior of a membrane by increasing its potential energy. Simplified
studies on membranes with finite masses began as early as [5, 6]. The studies [7–9] helped
Chen et.al [10] develop a vibroacoustic model for circular membranes with finite rigid disc mass
to analyze its sound transmission characteristics. The effect of the mass on the membrane is
considered using the point collocation method [11] wherein the weight of the mass is distributed
as a summation of point loads at discrete circumferential locations. The approach considers the
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continuity of displacement at collocation points along the interfacial mass-membrane boundary
and solves the homogeneous system to understand the modal behavior.

The present work extends the existing theoretical model based on the Newtonian approach
to strip mass. The point collocation method accurately captures the rigid body motion of the strip
mass and its effect on the stretched elastic membrane. The eigenvalue analysis determines the
mode shapes and resonance of the system. The incident acoustic wave excites the membrane and
causes sound radiation. This effect is considered in the governing equation to understand the
membrane’s vibroacoustic behavior. The modal superposition approach solves the vibroacoustic
integrodifferential equation for the membrane displacement field. The peak and dip frequencies
help determine the sound transmission characteristics of the mass-loaded membrane in the low-
frequency range. This study underlines the effect of strip mass on a circular membrane’s low-
frequency sound transmission characteristics. It is hoped that the results will help further the
utility of strip masses in low-frequency noise control.

2. EIGENVALUE PROBLEM

Consider a circular membrane (see Figure 1) of radius R, surface density ρs and pre-tension T fixed
at the outer periphery. A strip mass of width V, and surface density ρm are rigidly attached to the
membrane at an eccentricity d from the membrane center. Global polar coordinate system (r,θ)
with membrane center at origin O and local polar coordinate system (r

′
,θ

′
) with mass center at

origin O’ define the membrane model.

Figure 1: Circular membrane with eccentric strip mass

The governing equation for the membrane (Equation 1) in polar coordinates is,

ρs w,t t −T (w,r r + 1

r
w,r + 1

r 2
w,θθ) =

I∑
i=1

Qi (t )
1

r
δ(r −bi ) δ(θ−Θi ), (1)

where the effect of the strip mass weight on the membrane is considered as a summation of
discrete point forces Qi distributed over the interfacial boundary between the mass and the
membrane. δ is the unit impulse function. The study considers steady-state response and
suppresses e jωt for all the terms. Equation 2 is the restructured form of Equation 1,

α2 w + (w,r r + 1

r
w,r + 1

r 2
w,θθ) =−

I∑
i=1

[
Ni

bi

r
δ(r −bi )δ(θ−Θi )

]
, (2)

where α = ρsω
2/T , ω is the angular frequency, Ni = Qi /(bi T ), bi is the radial coordinate of the

i th collocation point from O. The general solution (Equation 3) is a linear combination of the
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homogeneous solution (variable separation) and the particular solution (Lagrange’s method of
variation of parameters).

w(r,θ) = +
∞∑

n=0
ϵn

{
A1n Jn(αr )− 1

2

I∑
i=1

Ni bi [Yn(αr )Jn(αbi )− Jn(αr )Yn(αbi )]u(r −bi )cosnΘi

}
cosnθ

+
∞∑

n=0
ϵn

{
A2n Jn(αr )− 1

2

I∑
i=1

Ni bi [Yn(αr )Jn(αbi )− Jn(αr )Yn(αbi )]u(r −bi )sinnΘi

}
sinnθ,

(3)

where Jn(αr ),Yn(αr ) are the first and second kind Bessel functions of order n. ϵ is a constant
with values 0.5 and 1 when n = 0 and n > 0 respectively. A1n , A2n are unknown constants
for symmetric and antisymmetric modes (about the axis of symmetry), determined from the
condition of fixed membrane outer boundary, w(R,θ) = 0. Ni and N∗

i are the unknown constants

for the point loading at the i th collocation point for symmetric and antisymmetric modes
respectively. The condition of mass-membrane displacement continuity at the collocation points,
w(r,θ)−w ′(a,θ′) = 0 results in an eigenvalue problem. Solving for the roots of this characteristic
equation gives the eigenfrequencies and subsequently the corresponding unknown constants Ni

and N∗
i . Back substituting the values into Equation 3 gives the mode shapes of the mass-loaded

membrane.

2.1. Results and Discussion

The present study considers circular membranes with a central strip mass and strip mass with an
eccentricity of 4mm and 6mm. The analytical model helps understand the effect of mass position
on the membrane eigenmodes. The relevant properties are provided in Table 1. The membrane’s
three lowest natural frequencies (Table 2) and modeshapes (see Figure 2) for symmetric modes
demonstrate the effect of the mass position on the eigenmodes. The black line in the plots (see
Figure 2) represents the reference configuration of the strip mass. The lowest natural frequency
increases with an increase in eccentricity while the other two natural frequencies decrease with an
increase in eccentricity.

Table 1: Mass and membrane parameters.

Membrane Mass

Mass density (kg/m3) 980 8960

Young’s modulus (Pa) 2 x 105 130 x 109

Poisson ratio 0.49 0.34

Weight (kg) - 40.32 x 10−6

Pretension (T) 51.2 -

Radius (m) 0.01 -

Width (m) - 0.0001

For the central strip mass, the strip mass’s translatory motion contributes to the membrane’s
large amplitude transverse displacement and is characterized as the first eigenmode. The second
and the third eigenmodes have increased contribution from the membrane motion and lesser
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Figure 2: First three symmetric modes of the circular membrane with zero eccentricity (a-c), 4mm
eccentricity (d-f), and 6mm eccentricity(g-i).

Table 2: Lowest three eigenfrequencies of the strip mass at different eccentricity

First (Hz) Second (Hz) Third (Hz)

Concentric mass (d = 0mm) 383.4 923.9 1440.5

Eccentric mass (d = +4mm) 413.7 683.8 1103.7

Eccentric mass (d = +6mm) 493.2 661.6 999.3

contribution from the strip mass. For the eccentric strip mass, the eccentricity introduces
rotational effects that modify the eigenmodes.
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3. VIBROACOUSTIC MODEL

Consider a plane wave p̃ I (equal to P̃I e− j ka z) incident on the circular membrane placed in
a cylindrical tube. ka is the wave number of the acoustic medium (air). The membrane
set into motion by the incident wave causes pressure variations in the medium, resulting in
sound radiation. Equation 4 captures the membrane’s fully coupled vibroacoustic behavior by
considering the acoustic loading in addition to pretension and the external mass,

ρs w,t t −T (w,r r + 1

r
w,r + 1

r 2
w,θθ) = p̃1

∣∣
z=0 − p̃2

∣∣
z=0 +

I∑
i=1

Qi (t )
1

r
δ(r −bi ) δ(θ−Θi ), (4)

where p̃1, p̃2 are the pressure fields to the left and right of the interface. The thickness effects of the
membrane are neglected. Conditions of steady-state response, geometric symmetry, divergence

of Yn at the membrane center, and rigid side wall ( ∂p̃
∂r

∣∣∣
r=R

= 0) applied to the linear acoustic

wave equation provides the pressure field of the excited membrane that contains both p̃1, p̃2.
Superposition with the incident acoustic wave gives the total pressure field of the membrane
(Equation 5),

p̃tot al (r,θ, z) = P̃I e− j ka z+
∞∑

m=0

∞∑
l=0

Ãml Jm(kml
r r )cos(mθ)e j kml

z z+
∞∑

m=0

∞∑
l=0

B̃ml Jm(kml
r r )cos(mθ)e− j kml

z z ,

(5)
where ‘m’ and ‘l’ represent the considered order and points of zero crossing of the Bessel function
respectively. Sorting Equation 5 into pressure fields to the left and right of the interface helps
determine the acoustic loading (see Figure 3 and Equation 6),

Figure 3: Strip mass loaded membrane subjected to acoustic loading in a cylinder.

p̃1(r,θ,0) = P̃I + P̃R +p−
|z=0 (6)

p̃2(r,θ,0) = P̃T +p+
|z=0,

where P̃I , P̃R , P̃T are the plane incident, reflected and transmitted pressure fields respectively
and p−, p+ are the higher order scattered pressure field. At the interface (z=0) between the
membrane and the acoustic medium, the membrane vibrates in phase with the medium. This
and the linearized Euler’s equation collectively relate the acoustic pressure with the membrane
displacement. The membrane displacement is also resolved into average displacement field
<w> that relates to the plane waves and the δw that relates to the higher order scattered waves
(Equation 7),

∂p1

∂z

∣∣∣∣
z=0

= ∂p2

∂z

∣∣∣∣
z=0

=ω2ρa(< w >+δw). (7)
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The solution provides the following relations,

P̃T = jωρaca < w >, (8)

P̃R = P̃I − P̃T , (9)

p̃−∣∣
z=0 = − p̃+∣∣

z=0

= P̃ (r,θ,0).
(10)

Acoustic loading is the difference between p̃1, p̃2,

p̃1 − p̃2 = P̃I + P̃R +p−
|z=0 − (P̃T +p+

|z=0). (11)

Substituting Equation 9 and Equation 10 into Equation 11 gives the compact expression for the
acoustic loading,

p̃1 − p̃2 = 2(PI −PT + P̃ (r,θ,0)). (12)

Green’s function coupled with Gauss divergence theorem provides the system response to the
scattered field by understanding the system response to an impulsive force (Dirac delta),

P (r,θ,0) =
∫ π

−π

∫ R

0
G(r,θ,0,r ∗,θ∗,0)

∂P (r ∗,θ∗, z∗)

∂z∗ |z∗=0 r ∗dr ∗dθ∗

=ω2ρa

∫ π

−π

∫ R

−0
Gδwr ∗dr ∗dθ∗.

(13)

The Green’s function G for the domain is,

G = e j ka S

4πS
+ e j ka S1

4πS1
,

with the boundary condition being,
∂G

∂z
|z=0 = 0, (14)

and

S =
√

r 2 + r ∗2 −2r r ∗ cos(θ−θ∗)+ (z − z∗)2,

S1 =
√

r 2 + r ∗2 −2r r ∗ cos(θ−θ∗)+ (z + z∗)2,
(15)

where S and S1 represent the distance between the source and field points to the left and right of
the interface respectively. Equation 16 is the governing equation of the fully-coupled vibroacoustic
model obtained by combining Equations 4, 8, 12 and 13.

−ρsω
2w−T∇2w+2iωρaca < w >−2ω2ρa

∫ π

−π

∫ R

0
Gδwr ∗dr ∗dθ∗ = 2PI +

I∑
i=1

Qi
1

r
δ(r −bi )δ(θ−Θi ),

(16)

where < w > represents the average displacement (that relates to plane waves) and ’δw’ is
the displacement field that relates to the higher order scattered wave field. To solve the
integrodifferential equation, the mode superposition approach is utilized wherein the membrane
displacement is considered as a summation of displacement modes,

w =
+∞∑
k=1

Wk (r,θ)qk , (17)
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where Wk is the k th mode displacement function and qk is the unknown participation factor of
the k th displacement mode. The mathematical expression for Wk (r,θ) is as given in Equation 3,

(ω2
l −ω2)(ρsπR2 <W 2

l >+mc2
l + I

′
y a2

l + I
′
xb

2
l )ql +

+∞∑
k=1

2iωρacaπR2 <Wl ><Wk > qk

−
+∞∑
k=1

2ω2ρa

[∫ π

−π

∫ R

0
Wl

∫ π

−π

∫ R

0
G(Wk−<Wk >)r ∗dr ∗dθ∗

]
qk = 2PIπR2 <Wl >,

(18)

where al ,bl ,cl ,dl are the constants for the rigid body motion of the strip mass for the l th

displacement mode. The constant qk is obtained by solving the above system of equations. The
sound transmission coefficient is,

T̃ = PT

PI
= jωρaca < w >

PI
, (19)

where < w >= ∑+∞
k=1 < Wk (r,θ) > qk based on mode superposition method and the transmission

intensity coefficient TI is |T̃ 2|.

3.1. Results and Discussion

The sound transmission characteristics of the strip mass-loaded membrane with a central strip
mass (see Figure 4) show transmission peaks at around 350 Hz and 900 Hz and dips at around 700
Hz and 1400 Hz. The maximum sound transmission loss occurs at around 700 Hz.

(a) (b)

Figure 4: Circular membrane with central mass: (a) represents the transmission intensity
coefficient. (b) represents the sound transmission loss.
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(a) (b)

Figure 5: Circular membrane with eccentric mass (d = 4mm): (a) represents the transmission
intensity coefficient. (b) represents the sound transmission loss.

The sound transmission characteristics of the strip mass-loaded membrane with an
eccentric strip mass (see Figure 5) show transmission peaks at around 400 Hz and 700 Hz and dips
at around 600 Hz. The maximum sound transmission loss occurs at around 700 Hz.

4. CONCLUSIONS

The present work uses the Newtonian approach-based analytical model to study the fully coupled
vibroacoustic behavior of strip mass-loaded membranes which has not been attempted before.
Results show that circular membranes with added strip mass are effective noise attenuators at the
higher side of the low-frequency range. This finding will help design mass-loaded membranes for
applications that require transmission peak/dip at higher frequencies within the low-frequency
domain. The effect of multiple strip masses on the sound transmission characteristics of the
membrane is a relevant future area of work.
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