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Towed sonar arrays house a series of pressure sensors inside a fluid-filled elastic tube. Towing of
the sonar array in water generates a turbulent boundary layer on the exterior surface of the fluid-
filled elastic tube. The pressure fluctuations in the turbulent boundary layer along with other ambient
pressure fluctuations, excites the elastic tube and further generates pressure disturbances in the interior
fluid. An empirical model proposed by Chase is widely used for predicting the turbulent pressure
spectrum for an axial flow past a cylinder. However, predictions using the Chase model show large
deviation from existing experimental results at low tow speeds. In this work we propose a "hybrid"
model derived using the insights gained from the Chase empirical model. The new hybrid model
predicts a turbulent pressure spectrum that shows closer agreement with the experimental results
for an axial flow over a cylinder at all tow speeds. The exterior turbulent pressure field generates
pressure fluctuations in the interior fluid (flow noise) that are modeled using the linear acoustic theory.
In this work, we also present an axisymmetric vibroacoustic model to predict the interior on-axis
sound pressure level. The vibroacoustic model is fully coupled as it combines the vibrations in the
elastic tube (using the Navier-Lame equations) with the pressure field in the interior fluid. We employ
the new hybrid model in conjunction with the vibroacoustic model to estimate the on-axis sound
pressure level due to the exterior turbulent pressure excitations at different tow speeds and elastic
tube diameters. Our results show that while the flow noise increases with tow speed, the change in
elastic tube diameter influences the noise spectrum only at relatively high frequencies. This work is
supported by the Deference Research and Development Organization, India.
Keywords: turbulent flow noise, sonar array, fluid-filled elastic tube, fully coupled vibroacoustic
model

1. Introduction

Towed sonar arrays house a series of pressure sensors inside a fluid-filled elastic tube. Towing of
sonar array in water generates a thick layer of turbulent flow over the exterior surface of the fluid-filled
elastic tube. The pressure fluctuations in the turbulent boundary layer (TBL) along with other ambient
sea pressure fluctuations, excites the elastic tube and further generates acoustic pressure disturbances in
the interior fluid. The hydrophones placed in the interior fluid picks these acoustic signals. The signals
associated with the turbulent pressure fluctuations are called flow noise. Currently, the flow noise is
measured either by towing the sonar array in open water using a dinghy or by allowing the hydrophone
to free fall in water[1]. In the first case, noise from the boat and vibrations of the towline connections
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pollutes the measured acoustic signals[2]; whereas in the second case, the useful measurements can be
made only at the terminal velocity of the hydrophone. This work aims at developing a numerical model
for predicting the flow noise in thin (length to radius ratio of the elastic tube greater than 1000) towed
sonar arrays which is useful over wide range of towing speeds.

2. Semi-empirical models for turbulent pressure spectrum

Of the several models, the one by Chase [3] is widely used to predict the turbulent pressure field for
an axial flow past a solid cylinder.

2.1 Chase model

Chase initially proposed a model for predicting turbulent pressure spectrum over a flat plate [3]:

P (kz, k2, ω) = C2ρ
2v6∗ω

−3(v∗K/ω)2 (1)

where K2 = k2
z + k2

2 , kz and k2 are the wavenumbers in the direction of flow (axial) and cross flow,
respectively. ω denotes the frequency, ρ the density of the fluid and ν∗ = 0.04U is the friction velocity
with U representing the free stream velocity. Chase[3] further derived the turbulent pressure spectrum
for an axial flow past a solid cylinder by incorporating the azimuthal variations as given by

Pm(kz, ω) =

∫ (m+1/2)/R

(m−1/2)/R

P (kz, k2, ω)dk2 (2)

Here, m is a whole number associated with the azimuthal variation and R is the radius of the cylinder.
For an axisymmetric flow (m = 0), the above integral yields, after including correction terms for the

convective wavenumber,

P0(kz, ω) = Cρ2ν3
∗R

2

[
(kzR)2 +

1

12

][
(ωR− uckzR)2

h2ν2
∗

+ (kzR)2 + b−2

]−2.5

(3)

In the above equation, uc denotes the convective speed (uc = 0.68U , a large fraction of tow speed U ),
C = 0.063 and h = 3.7. Although the above model predicts the spectrum at low frequencies fairly well,
the estimated values are very small compared to experiments [2], particularly at low tow speeds.

2.2 Frendi model

Another important turbulent pressure spectrum model for flow over flat plate is that by Frendi et
al. [4]. Frendi et al. proposed that the turbulent pressure field over a flat plate is given by

R̂(kz, k2, ω) = C1R
∗(ω)e−α̂rk (4)

where R∗(ω) is turbulent pressure field autospectrum [5], C1 is constant, α̂ is given by α̂ = αδ where
α is a constant, δ is the boundary layer thickness[4], rk depends of the axial wavenumber (kz) and cross
flow wavenumber (k2) given by [4]

|r2k| = (kz −
ω

uc

)2 + (mk2)
2 (5)
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In the above equation, m is the scaling factor which is approximately taken as 1/7.7 [4], ω is the frequency
and uc is the convective speed. The term α is given by [4]

α =
a1
π

1√
1 + a2(

ωδ
ut

− 50)2
(6)

where ut (v∗ in Chase model) is the friction velocity, a1 = 4.7 and a2 = 3e−5.

2.2.1 Modified Frendi model

The above Frendi’s model (Eq. 4) can be modified to suit to the case of an axial flow past a solid
cylinder using Eq. 2. Accordingly, the turbulent pressure wavenumber-frequency spectrum for a cylinder
(axisymmetric) is thus given by

R̂(kz, ω) =

∫ 1/2a

−1/2a

R̂(kz, k2, ω)dk2 (7)

It is observed that the modified Frendi model overpredicts the turbulent flow noise for axial flow over a
cylinder with respect to experimental observations [2].

3. A new hybrid model

In this section, we develop a "hybrid" model using the insights from the Chase and the Frendi models.
The intent is to have a better model prediction closely matching with the experimental results of Unnikr-
ishnan [2]. In the new hybrid model, we use the pressure spectrum of Chase and an exponential decay
function of Frendi. The new hybrid model is given by

P (kz, k2, ω) = C3P̄ (ω)e−α̂rk (8)

Here C3 = 0.0001 and the pressure spectrum P̄ (ω) is obtained by integrating the turbulent pressure field
proposed by Chase (see Eq. 3) over the axial wavenumber kz:

P̄ (ω) =

∫ ∞

−∞
P0(ω, kz)dkz (9)

The term α̂ = αδ, where α is given by Eq. 6. a1 determines the shape of the flow noise at low frequencies
and a2 determines the shape at high frequencies. We used a2 = 3e−6 and tried different a1 values to match
the Unnikrishnan’s experiment results. a1 = 1 gives a better match with the experimental results.

3.1 Flow noise

The flow noise measured by an array of hydrophones is given by [2]

Q(ω) =

∫ ∞

−∞
P (kz, ω)H(kz)dkz (10)

In the above equation, P (kz, ω) is the wavenumber frequency spectrum of turbulent pressure field as
received by a single hydrophone and H(kz) is the hydrophone response function. The hydrophone array
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is a set of large number of similar elements with specific length arranged at a fixed distance apart. This
array acts as noise filter and its response (hydrophone response function) is given by [2]

H(kz) =
sin(kzdN/2)

Nsin(kzd/2)

sin(lkz/2)

lkz/2
(11)

where N is the number of small elements in the array, d is the distance between two elements and l is the
length of individual elements. For the new hybrid model, the flow noise is given by

Q(ω) =

∫ ∞

−∞

∫ 1/2a

−1/2a

C3P̄ (ω)e−α̂rkH(kz)dk2dkz (12)

A comparison of flow noise computed using the hybrid model, Chase model [3], modified Frendi
model [4] and Unnikrishnan’s experiment [2] are shown in Fig. 1. The experiment reported in [2] was
conducted in a quiet lake with the help of a dinghy pulled by a hydraulic winch to reduce the noise
from propulsion systems. However, the measured flow noise levels beyond 400 Hz was limited by the
ambient noise floor. This indicates the presence of ambient noise in the results presented in [2]. It can
be observed from Fig. 1 that the Chase model predictions are comparable with respect to the measured
values [2] at high towing speeds. But, the deviation is large at higher frequencies for low tow speeds.
It can be observed that the modified Frendi model [4] is over predicting the flow noise at almost all the
frequencies. At all tow speeds, the new hybrid model predictions are closer to the measured values [2]
than the Chase model and the modified Frendi model predictions.
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Figure 1: A comparison of flow noise predicted by the hybrid model, the Chase [3] model and modified Frendi
model [4] with that measured from experiments [2].

The non-dimensional power spectral density calculated using the new hybrid model for different tow
speeds are shown in Fig. 2. The non-dimensional power spectral density for different tow speeds collapse
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to a single curve against the non-dimensional frequency space ωD/U . One can obtain the power spectral
density at different tow speeds and cylinder diameters using this “single" non-dimensional curve.

A comparison of wavenumber frequency pressure spectrum for the hybrid, the Chase and the modified
Frendi models at 2 Knots is shown in Fig. 3. It can be seen that for all models, the spectrum peaks at
convective wavenumber and it further reduces with wavenumber. The hybrid model and the modified
Frendi model pressure spectrum reduces at a faster rate beyond the convective wavenumber than the
Chase model.
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Figure 2: Non-dimensional power spectral density for
different tow speeds using the new hybrid model.
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Figure 3: A comparison of turbulent pressure spectrum
of the hybrid model with the modified Frendi and the

Chase models.

4. Axisymmetric vibroacoustic model of a fluid-filled elastic tube

The turbulent pressure field excitation at the exterior creates vibrations in the elastic tube which in
turn generates acoustic pressure fluctuations in the interior fluid where the hydrophone array is placed.
In this section, we develop an axisymmetric model of the fluid-filled elastic tube and use it to calculate
the sound pressure level received by the hydrophone array.

The elastic tube may be modeled using the Navier-Lame equations [6]

µ∇2u + (λ+ µ)∇∇.u = ρü (13)

where λ and µ are the Lame’s constants, u is the displacement vector and ρ is the density of the tube.

4.1 Elastic tube displacement and stress components

Transforming the above equation into the Fourier domain and solving for the axial (Ue) and the radial
(We) displacements, we get [6]

Ŵe(r, kz, ω) = (Q̂1J1(rβ1) + R̂1Y1(rβ1))χ1 + (Q̂2J1(rβ2) + R̂2Y1(rβ2))χ2 (14)

Ûe(r, kz, ω) = Q̂1J0(rβ1) + R̂1Y0(rβ1) + Q̂2J0(rβ2) + R̂2Y0(rβ2) (15)

β2
1 = ω2

C2
L
− k2

z , β2
2 = ω2

C2
T
− k2

z , C2
L = λ+2µ

ρ
and C2

T = µ
ρ
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The stress components can be derived using

σ̂rr(r, kz, ω) = (λ+ 2µ)
∂Ŵe

∂r
+

λ

r

(
Ŵe

)
+ λ

∂Ûe

∂z
(16)

τ̂rz(r, kz, ω) = µ

(
∂Ŵe

∂z
+

∂Ûe

∂r

)
(17)

4.2 Acoustic pressure field inside the tube

The acoustic pressure field inside the elastic tube may be modelled using the acoustic wave equation

∇2P =
1

c2
∂2P

∂t2
(18)

where P = Pf is the pressure inside the cylinder and c is the speed of sound in the fluid. Taking the
Fourier transform and solving using the variable separable method we get

P̂f (r, kz, ω) = P̂i(kz, ω)J0(αr) (19)

Using the Euler equation (∇Pf = −ρ∂u
∂t

where ρ is the density of the inside fluid and u is the velocity
of the fluid inside the cylinder), the radial fluid displacement inside the fluid can be obtained as

Ûf (r, kz, ω) = −P̂i(kz, ω)
α

ρω2
J1(αr) (20)

where α = k2
w − k2

z , kw (= ω/c) is the acoustic wavenumber.

4.3 Boundary conditions

The boundary conditions for fluid-filled elastic tube excited with an external turbulent pressure fields
are given below.

1. The shear stress on the r plane in the z direction inside and outside of the tube is zero.

τrz(b, kz, ω) = 0, τrz(a, kz, ω) = 0 (21)

where b and a are the outer and inner radius of the tube, respectively.
2. On the outer surface of the elastic cylinder, normal stress is equal to the pressure due to the turbulent

boundary layer.
τrr(b, kz, ω) = −P0(kz, ω) (22)

where P0(kz, ω) is the wavenumber-frequency spectrum of the turbulent pressure field. (For the
Chase model, it is given by Eq. 3).

3. At the inside interface, the pressure inside the fluid is equal to the radial component of normal
stress in the elastic tube.

Pf (a, kz, ω) = −τrr(a, kz, ω) (23)

4. The radial displacement of the fluid inside is equal to that in the elastic cylinder at the inside
boundary.

Uf (a, kz, ω) = Ue(a, kz, ω) (24)

These boundary conditions can be expressed in a matrix form and can be solved for the constant
coefficients (Q1, Q2, R1 and R2) and P̂i(kz, ω). Further we solve Eq. 19 for the inside pressure pressure
field. Note that r can be varied to find the pressure at different location inside the tube.
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4.4 Flow noise inside the fluid-filled elastic tube

The flow noise inside the tube is defined as [7]

Q(ω) = 4π

∫ ∞

−∞
|Pf (r, kz, ω)||H(kz)|2dkz (25)

where Pf (r, kz, ω) is the pressure field inside the fluid-filled elastic tube and H(kz) is the hydrophone
response function (Eq. 11). The interior pressure field Pf (r, kz, ω) may be considered as the product of
the turbulent pressure outside and the tube transfer function.

Fig. 4 shows a comparison of the on-axis flow noise computed using the present model (combining
the hybrid model for the turbulent pressure field and the axisymmetric vibroacoustic model for the fluid-
filled elastic tube) with that of Jineesh et al. [8]. Table 1 lists the parameter values used to compute the
flow noise. It can be seen that the present model predicts lower sound pressure levels at low frequencies
(≤ 10 dB) than that by Jineesh et al. Whereas at high frequencies, the present model predictions are
higher (≤ 10 dB) than Jineesh’s predictions.
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Figure 4: A comparison of the present model on-axis
flow noise predictions with that of Jineesh et al. [8].

Table 1: Parameters used for estimation of flow
noise inside the fluid-filled elastic tube.

Property Values

Tube diameter (m) 0.04
Tube thickness (m) 0.005
Flow velocity (knots) 20
Number of hydrophones 50
Length of hydrophone (m) 0.05
Hydrophone spacing (m) 0.25
Exterior fluid density (kg/m3) 1000
Interior fluid density (kg/m3) 800
Reference pressure (µ Pa) 1
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Figure 5: Flow noise variation with frequency for
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The present model is further used to compute the on-axis flow noise for different tube diameters.
Fig. 5 shows the variation in flow noise for six different (outside) diameters varying from 20 mm to 80
mm at 20 knots. There is hardly any change in the flow noise at lower frequencies. The corresponding
radial wavelength at lower frequencies is much larger as compared to the tube diameters. Any attenuation
due to an increase in diameter is therefore negligible at lower frequencies. However at high frequencies,
the radial wavelength is comparable to the tube diameter. An increase in the tube diameter therefore
results in an increase in the acoustic attenuation. This results in a lower sound pressure level for large
diameter tubes at high frequencies. Fig. 6 shows the variation in on-axis flow noise for a tube of outside
diameter 40 mm at different tow speeds. The turbulent pressure fluctuations increases in intensity with
increasing tow speed. This results in an increased on-axis sound pressure level for higher tow speeds.

5. Conclusions

We have developed a new hybrid model for estimating the turbulent pressure field wavenumber-
frequency spectrum for the axial flow past a solid cylinder of circular cross-section. The model predic-
tions are found to be superior to that from a widely-used semi-empirical model and compares reasonably
well with available experimental results. A fully coupled vibroacoustic model (axisymmetric) is devel-
oped to predict the on-axis pressure field inside a fluid-filled elastic tube. The model is obtained by
coupling the Navier Lame equations for the elastic tube with the wave equation for the interior fluid. The
model is further used to estimate the on-axis sound pressure level due to the turbulent pressure excitation
at the exterior of the tube. The hybrid model presented in this work is used for estimating the turbulent
pressure field at different tow speeds and tube diameters. The on-axis sound pressure level variation is
found to be negligible at low frequencies for different tube diameters. However, it decreases with an
increase in the tube diameter. The model also predicts an increase in the on-axis sound pressure levels
with an increase in the tow speed.
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