2-Dimensional Nanomaterials for Electrocatalysis

The discovery of graphene has opened up new horizons in material science research with its unique and spectacular physical, mechanical, electrical and optical properties.1 Graphene research has sparked great interest in a wide range of 2-dimensional layered materials with varying electronic properties. Atomically thin layered transition metal dichalcogenides (TMDs) such as MoS2, WS2, MoSe2 and WSe2 have been emerging as the cutting edge in materials science and engineering, due to their interesting electronic properties.2 These materials open up new opportunities for a variety of applications, including optoelectronics, energy conversion, and catalysis. To realize their potential device applications, it is highly desirable to achieve controllable growth of these layered nanomaterials, with tunable structure and morphology.3,-6 In this talk, I will first introduce the controlled synthesis technique that we have developed for the growth of luminescent quantum dots of TMDs.6 The method could be extended for other layered materials and such tailored materials show exceptional electrocatalytic properties toward hydrogen evolution reaction (HER)7 and oxygen evolution reaction (OER).8 The talk will also present some of our recent efforts on morphological and electrocatalytic studies of chemical vapour deposition (CVD) grown spiral and pyramid-like few-layer TMDs.

 

References

  1. A. K. Geim, K. S. Novoselov, Nat. Mater. 2007, 6, 183-191.

  2. H. R. Gutiérrez, N. Perea-López, A. L. Elías, A. Berkdemir, B. Wang, R . Lv, F. López-Urías, V. H. Crespi, H. Terrones, M. Terrones, Nano Lett. 2013, 13 (8), 3447-3454.

  3. Y. Gong, P. M. Ajayan et al., Nat. Mater., 2014, 13, 1135–1142

  4. D. Gopalakrishnan, D. Damien and M. M. Shaijumon, ACS Nano, 2014, 8, 5297-5303.

  5. D. Damien, A. Anil, D. Chatterjee and M. M. Shaijumon, J. Mater. Chem. A 2017, 5, 13364-13372.

  6. D. Gopalakrishnan, D. Damien, B. Li, H. Gullappalli, V. K. Pillai, P. M. Ajayan, and M. M. Shaijumon, Chem. Commun. 2015, 51, 6293-6296.

  7. Prasad, Shaijumon et al., Nanoscale , 2018, 10, 9516-9524

  8. R. Prasannachandran, T.V. Vineesh, A. Anil, B. M. Krishna and M. M. Shaijumon, ACS Nano, 2018, 12, 11511-11519